Archives

A B C D E F G H K L M N O P R S T V W Z

Linse

Ein Körper aus einem optischen Material (üblicherweise Glas) mit zwei optisch aktiven Flächen.

Linsen haben als wesentliche Eigenschaft, dass sie Objektpunkte in Bildpunkte abbilden.

Linsengleichung

Für
f = Brennweite
g = Gegenstandsweite ( = Entfernung vom Objekt zur objektseitigen Hauptebene) und
b = Bildweite ( = Entfernung vom Objekt zur bildseitigen Hauptebene)
lautet die sog. Linsengleichung:

\frac{1}{f} = \frac{1}{g} + \frac{1}{b}

Auflösung nach der Brennweite

f= \frac {1} {\frac {1} {g} + \frac {1} {b}}= \frac {1}{\frac {g+ b}{g \cdot  b}}=\frac {g \cdot b}{g+b}

Auflösung nach der Gegenstandsweite

g= \frac {1} {\frac {1} {f} - \frac {1} {b}}=\frac{f \cdot b}{b- f}

Auflösung nach der Bildweite

b= \frac {1} {\frac {1} {f} - \frac {1} {g}} = \frac {f \cdot g}{g- f}

Interpretation der Linsengleichung

Was kann man diesen Formeln ansehen?

  • Das Bild unendlich weit entfernter Objekte liegt in der Brennebene

Entfernt sich nämlich ein Objekt unendlich weit von der Linse (= wird die Gegenstandsweite g unendlich groß), so wird

\frac {1} {g} \rightarrow 0

Also

b= f
  • Ein Objekt das in der objektseitig doppelten Brennweite liegt, wird in Originalgrösse auf ein Bild sensorseitig in doppelter Brennweite abgebildet.
  • In anderen Worten : Möchte man eine 1:1 Abbildung in Entfernung X vom Sensor erreichen, wähle man
f = \frac {X}{4}

(von X ist noch der Abstand der Hauptebenen abzuziehen)

  • Ist die Gegenstandsweite gleich der Brennweite, so liegt das Bild im Unendlichen.
  • Je näher sich ein Objekt von Unendlich kommend der Brennweite nähert, desto ähnlicher werden Brennweite und Gegenstandsweite. Also muss :\frac {1} {b} \rightarrow 0 gehen.
  • Ein Objekt im Abstand der Brennweite vor der Linse hat sein Bild in unendlicher Entfernung (= wird auf unendlich abgebildet).
  • Für ein Objekt, das näher als als die Brennweite an eine Linse kommt, muss :\frac {1} {b} < 0 gelten. Das Bild ensteht also auf der Objektseite (!) der Linse.

Linsenschleiferformel

(auch Linsenmacherformel und Linsenmachergleichung genannt)

Die Formel (ganz unten auf der Seite) gibt für dünne, sphärische Linsen den Zusammenhang zwischen Form und Brechkraft an.

Es sei d die Mittendicke ( engl. center thickness) der Einzellinse.
R_1 und R_2 seien die Radien der Kugeln die die Oberflächen beschreiben.
Dabei sind die Vorzeichenkonventionen zu beachten!

n_0 sei der Brechungsindex des Mediums außerhalb der Linse und
n sei der Brechungsinsex des Linsenmaterials.

f sei die Brennweite der Linse und
D sei ihre Brechkraft, also \frac{1}{f}

Für sphärische optische Systeme gilt allgemein in der paraxialen Umgebung :
D = \frac{1}{f} = \frac{n-n_0}{n_0}\cdot (\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n-n_0)\cdot d}{n \cdot R_1 \cdot R_2})
Ist das umgebende Medium Luft, so gilt näherungsweise ( wegen n_0 \approx 1 ):

D = \frac{1}{f} = (n-1)\cdot (\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n-1)\cdot d}{n \cdot R_1 \cdot R_2})

Sind die Linsen außerdem noch dünn (gilt also idealisierend d = 0), so vereinfacht sich die Formel zur
Linsenmacherformel:
D = \frac{1}{f} = (n-1)\cdot (\frac{1}{R_1} - \frac{1}{R_2})